
Math 4200
Wednesday October 21
2.5  discuss conformal diffeomorphisms of the disk via the maximum modulus principle,
in Monday's notes, and the Poisson integral formula for harmonic functions in the disk, 
in today's notes.  On Friday we will begin Chapter 3 about series representations of 
analytic functions.

Announcements:   Quiz today!

Warm-up exercise:



Application to harmonic function theory (in partial differential equations).  There is an 
analog of the Cauchy integral formula for harmonic functions, that expresses the value 
of a harmonic function inside a domain in terms of an integral over the boundary which 
uses the harmonic function's boundary values.  It's much messier to write down than the 
Cauchy integral formula in general -  if you wanted to take the real part of the Cauchy 
integral formula you'd also need to know the boundary values of the conjugate to the 
harmonic function, to deduce the values of the harmonic function in the interior, so you 
can't just use the CIF, like we did for the mean value property.   In the case where the 
domain is the unit disk (or a scaled disk), this analog to the CIF is known as the Poisson 
integral formula and we can prove it via the mean value property and Mobius 
transformations.

Theorem  (Poisson integral formula for the unit disk)  Let 
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integral formula recovers the values of u inside the disk, from the boundary values.  It 
may be expressed equivalently in complex form or real form.  For 
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  First, check why the CIF formula wouldn't work directly (except for u 0 )  unless 
we knew the harmonic conjugate.



 But we do know the mean value property, and we can combine this with the Mobius
transformations in yesterday's notes!  (Actually we only know the mean value property 
if u is harmonic on a slightly larger disk than D 0; 1 , but it also holds for harmonic 
u C2 D 0; 1  C D

_
0; 1 , by a rescaling, limiting process. ) In any case, 

consider the Mobius transformation
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z  is harmonic on the unit disk (do you remember why, from a Chapter 1

homework problem?).  So by the mean value property for the composition,
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Now we just change variables, and after some computations out pops the Poisson 
integral formula!  Consider  as a function of  on the unit circle via
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To get  we differentiate e.g. the second change of variables formula,  using the 
chain rule for curves and regular Calculus

d
d g z

0
ei = d

d ei 

g z
0

ei i ei = i ei  .

From yesterday's notes, g z0
z =

1 z0
2

1 z0
_

 z 2  so the identity above for  reads

1 z0
2

1 z0
_

 ei 2  i ei = i 
z0 ei 

1 z0
_

 ei 
 



so  (repeating some equations on this page hoping for lecture clarity):
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where satisfies the identity
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QED!!



Harmonic functions exist and are uniquely determined by their boundary values - we 
know that from the maximum principle for continous boundary values, and it's even true
if the boundary values are only piecewise continuous....in the disk the harmonic 
functions can be expressed using Fourier series, or with the Poisson integral formula we 
just proved, and as we've mentioned, they describe various physical phenomena, such as 
equilibrium temperature distributions in 2-dimensional plates having controlled 
boundary temperatures....also related to random walk phenomena in probability, other 
applications.

http://mathfaculty.fullerton.edu/mathews/c2003/DirichletProblemDiskMod.html



warmup for Chapter 3, if we have time today....

Chapter 3:  Series representations for analytic functions.   Section 3.1:  Sequences and 
series of analytic functions.

Recall a key analysis theorem which we proved and used in our discussion of uniform 
limits of analytic functions last week, in which we used Morera's theorem to prove that 
uniform limits of analytic functions are analytic: 

Theorem  Let A , fn : A  continuous, n = 1, 2, 3 ...   If fn f  uniformly, then
f  is continuous.  (The same proof would've worked for A k, Fn : A p , 
Fn F  uniformly.)

Corollary  Let A , fn : A  continuous, n = 1, 2, 3 ...   If fn  is uniformly 
Cauchy, then there exist a continous limit function f : A , with fn f  uniformly.




